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Abstract

We investigate the issue of which state functionals can have their uncertainty estimated
efficiently in dynamical systems with uncertainty. Because of the high dimensionality
and complexity of the problem, sequential Monte Carlo (SMC) methods are used. We
investigate SMC methods where the proposal distribution is computed by maximum
likelihood or by a linearization approach.We prove that the variance of the SMC method is
bounded linearly in the number of time steps when the proposal distribution is truncated
normal distribution. We also show that for a moderate large number of steps the error
produced by approximation of dynamical systems linearly accumulates on the condition
that the logarithm of the density function of noise is Lipschitz continuous. This finding is
significant because the uncertainty in many dynamical systems, in particular, in chemical
engineering systems, can be assumed to have this nature. We demonstrate our findings
for a simple test case from chemical engineering. The theoretical findings provide a
foundation for the parallel software SISTOS.

Keywords: Hidden Markov model, ordinary differential equation, sequential Monte
Carlo methods, chemical process

1. Introduction

Accountancy of expensive or consequential materials in the production process for
chemical plants is a critical endeavor. For example, nuclear fuel reprocessing [1] facilities
are expensive to build, are costly to operate, and have multiple stages and subsystems
[2, 3, 4], losses of even minute amounts of the nuclear fuel can be therefore consequen-
tial. Currently, the Unite States has more than 15,000 chemical plant sites, which are
required to file a risk management plan with the U.S. Environmental Protection Agency.
Such plans consider both worst-case scenarios and alternative-case scenarios. Alterna-
tives include the abnormal release of controlled materials or illegal plant interference.
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Whereas worst-case scenarios can be determined relatively efficiently with mass-balance
approaches, it is difficult to detect long-term, slow releases, which are likely to be con-
fused with measurement noise or other uncertain information. Hence, having superior
accountancy will enable early detection of situations that may affect the safety of such
plants and that may otherwise be hard to detect.

Aiming for incorporating more information in the accountancy process, we investigate
issues connected with modeling chemical reactions, in addition to achieving a superior
estimation of the state. The problem is the one of estimating functionals of the state of a
nonlinear dynamical system, given measurements with noise. To that end, we investigate
the use of a hidden Markov model to estimate important functionals of the state of the
system [5]. However, because of the high dimensionality and the nonlinear nature of the
chemical reaction, to produce samples from the target distribution is difficult. Not the
least of the difficulties is the fact that the large dimension of high-fidelity models may
not allow us to store in memory all estimates at one time. Therefore, we investigate
sequential sampling plans. Specifically, sequential Monte Carlo (SMC) methods (also
called particle filters) produce scenarios of past and current time so that function of
interest can be estimated. The most famous filter is the Kalman filter [6], which is used
to make estimates in a Bayesian framework for linear Gaussian problems. For nonlinear
systems, ensemble Kalman filters [7, 8] or unscented Kalman filters [9] have emerged.
One difficulty of such filters is their need to maintain at each step an approximation of
the full covariance matrix and to update each of its entries, which results in exceedingly
large memory and computational requirements [10].

In this paper, we investigate SMC methods that account for full nonlinearity. The
proposal density is obtained by approximating the Hessian information of the logarithm
of the targeted density at modal scores and can be loosely thought of as using a Kalman
concept as a “preconditioner” for the sampling. By doing so, we get more accurate
estimates while approaching the performance of Kalman methods. Our main goal is to
determine whether SMC works for dynamical systems of the type encountered in chemical
plants. We will thus justify the various assumptions we make about the dynamical
systems by typical features encountered in real systems.

The key hypotheses investigated are that (1) the variance of the estimates produced by
the method guarantees apriori the approach is tractable and (2) the proposal distributions
we derive are sufficiently practical to be implemented. We demonstrate our findings
on a synthetic example around the methane steam reforming reaction. We implement
SISTOS, the Sequential Importance Sampling Toolkit of ODE Systems for statistical
estimates of dynamical systems.

2. The Statistical/Uncertainty Model

2.1. Hidden Markov Model

The hidden Markov model (HMM) is a widely used approach in temporal pattern
recognition, such as finance [11]; handwriting [12]; speech [13]; bioinformatics [14]; and,
perhaps the area closest to that used here, weather forecast [10].

HMM is based on a state space model that includes two components. The first
describes the state evolution of the dynamical system; while the second models noisy
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observations that are dependent on the state. Both parts include uncertainties. The
mathematical formulation is described as follows

xi = M(xi−1) + µi, (1)

zi = H(xi) + νi, (2)

where i is the discrete time index. Here xi ∈ X is the state variable (for example, the
moles of the reactants in the reaction at the beginning of step i) and µi is a random
variable that quantifies the uncertainty in the model (for example, in the outside feed
or in the model itself). The variable zi ∈ Z are the observed quantities (for example,
the outputs after some time period tf ) and νi is a random variable that quantifies
measurement error i. The variables µi and νi are the core of the uncertainty model.
Their definition controls the lack of information about both the computational model
and the measurement process, essentially the entire uncertainty space.

Another component of the model is M :M⊆ X → X , a nonlinear function describing
the evolution of the dynamical system over the period between two observations (for
simplicity we assume it models an autonomous system, though that assumption can
easily be relaxed). The mapping H : X → Z denotes the response of the measuring
process. It is natural to assume that the X ⊂ Rnx and Z ⊂ Rnz are compact because
many dynamical systems such as chemical plants have limited capacity and most state
variables should be nonnegative.

It immediately follows that the system described in (1) has the Markov property

p (xk|xk−1,xk−2, . . . ,x0) = p(xk|xk−1).

To simplify the notation, we let x0:k := (x0, · · · ,xk)T and z0:k := (z0, · · · , zk)T . From
the Markov property we obtain that the prior density is

p(x0:k) =

k∏
i=0

p(xi|xi−1). (3)

From (2) we compute the density of the collection of observations conditioned on x0:k as

p(z0:k|x0:k) =

k∏
i=0

p(zi|xi). (4)

Here the density function p(xi|xi−1) and p(zi|xi) are calculated from the distribution of
µi and νi by using the convention p(x0|x−1) = p(x0).

According to the Bayesian formula, we compute the posterior predictor density or
targeted quantity

p(x0:k|z0:k) =
p(x0:k)p(z0:k|x0:k)

p(z0:k)
. (5)

The numerator of (5) can be readily calculated through equations (3) and (4). The
denominator is difficult to obtain, however, since it requires an integration over a large
dimensional space with density p(x0:k, z0:k).

3



If both the error model and the noise are normally distributed, that is, µi ∼ N (x̄i, Qi)
and νi ∼ N (0, Ri), the posterior density function then can be written as follows:

p(x0:k|z0:k) ∝
exp

(
− 1

2

k∑
i=0

gi(xi−1,xi, zi)

)
p(z0:k)

, (6)

where

gi(xi−1,xi, zi) =
(
xi −M(xi−1)− x̄i

)T
Q−1i

(
xi −M(xi−1)− x̄i

)
+
(
zi −H(xi)

)T
R−1i

(
zi −H(xi)

)
(7)

with M(x−1) = 0.

2.2. The Problem to Be Solved

The formal problem is stated as follows: Evaluate the integral

I(φ, k, p) =

∫
φ(x0:k)p(x0:k|z0:k)dx0:k (8)

given the hidden Markov model and a sequence of observations z0:k. In our work, two
types of φ are considered. One is a cumulative state estimate,

φ(x0:k) =

k∑
i=0

ψ(xi); (9)

the other is terminal state estimate

φ(x0:k) = ψ(xk). (10)

3. The Sequential Monte Carlo Method

The early idea of the sequential Monte Carlo methodology is provided in [15] and
[16]. Since then, these kinds of methods have received considerable attention and are
widely used in automatic control [17], geophysical group [18], and biology [19]. Sequential
Monte Carlo (SMC) methods are sophisticated estimation techniques. Such methods are
usually employed to produce samples (particles) of state variables or their associated
calculated values for hidden Markov models. These samples are propagated over time by
using the importance sampling (IS) [20] and resampling mechanisms [21].

According to [22], the following recursive formula holds:

p(x0:i|z0:i) = p(x0:i−1|z0:i−1)
p(zi|xi)p(xi|xi−1)

p(zi|z0:i−1)
, (11)

If we can produce samples at time step i from

p(zi|xi)p(xi|xi−1)

p(zi|z1:i−1)
, (12)
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then (11) can be used to recursively sample from the proper distribution. Nevertheless,
the denominator in (12) is exceedingly hard to estimate, thus making this distribution
difficult to sample from. This difficulty is mitigated by importance sampling.

The basic idea of importance sampling, which is used here, is to sample from a
proposal distribution so that its samples make the integrand large and make the most
important contribution to the integrand (8). Suppose that at the ith step, with known
states for previous steps and the observations until now, the proposal density is denoted
as q(xi|x0:i−1, z0:i). The proposal density chosen here is a general case. Later we will
choose a particular case that is much easier to compute. Define

q(x0:i|z0:i) := q(x0:i−1|z0:i−1)q(xi|x0:i−1, z0:i)

to be the proposal density for p(x0:i|z0:i). The ratio of p(x0:i|z0:i) and q(x0:i|z0:i) can
be computed recursively as

p(x0:i|z0:i)
q(x0:i|z0:i)

=
p(x0:i−1|z0:i−1)

q(x0:i−1|z0:i−1)

p(x0:i|z0:i)
p(x0:i−1|z0:i−1)q(xi|x0:i−1, z0:i)

.

By rearranging this equation, we obtain

p(x0:i|z0:i)
q(x0:i|z0:i)

=
p(x0:i−1|z0:i−1)

q(x0:i−1|z0:i−1)

p(x0:i, z0:i)

p(x0:i−1, z0:i−1)q(xi|x0:i−1, z0:i)

1

p(zi|z0:i−1)
.

This formula suggests a sampling-based approximation of the conditioned density in
terms of the sequential sampling as follows:

p(x0:i|z0:i) =

N∑
n=1

Wn
i δxn

0:i
(x0:i),

where xn0:i are sampled from proposal density q. Of course p(zi|z0:i−1) is unknown, but
it is only a number that can be eliminated by normalizing the weight to add to 1. Thus,
the unnormalized weight of the nth sample, xn0:i, is defined by

W̃n
i = Wn

i−1
p(xn0:i, z0:i)

p(xn0:i−1, z0:i−1)q(xni |xn0:i−1, z0:i)
, (13)

and the normalized weight is obtained by

Wn
i =

W̃n
i∑N

n=1 W̃
n
i

. (14)

Note that (13) involves only unnormalized weights and hence uses only joint density
functions p(xn0:i, z0:i) and p(xn0:i−1, z0:i−1) and is easy to compute. With the samples
sequentially produced from proposal density and the weights, we can compute a Monte
Carlo approximation of the integral:

I(φ, k, p) ≈
N∑
n=1

Wn
k φ(xn0:k). (15)
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This method is called sequential importance sampling (SIS).
SIS usually is good only for moderate-size problems because the variance of the

weights tends to increase when k increases. Resampling would improve the performance
by removing samples with possible low weight. The basic idea of resampling is to use
the information of weights of samples of previous steps to get the new samples up to
current time step so that every new sample has a new equal weight. The most commonly
used resampling methods are systematic random resampling, residual resampling and
multinomial resampling [21, 22]. In our context, we call SIS methods plus resampling
SMC methods [22]. After resampling, the weights are updated to be equal, that is, 1/N.
Then the approximation to the integral is

Ismc =

N∑
n=1

1

N
φ(xn0:k). (16)

3.1. Generating the Proposal Distribution by Maximum Likelihood

In this subsection, our goal is to develop a method to find a proposal density by obtain-
ing a second-order approximation of log [p(xi|xi−1)p(zi|xi)]. To simplify the problem, we
assume that the following regularity conditions are satisfied by log [p(xi|xi−1)p(zi|xi)].

Assumption 1. The log density log [p(xi|xi−1)p(zi|xi)] is twice continuously differen-
tiable with respect to xi. There exists a unique solution of ∇xi

log
(
p(xi|xi−1)p(zi|xi)

)
=

0 and its Hessian ∇2
xi

log
(
p(xi|xi−1)p(zi|xi)

)
at the solution is negative definite.

We choose a special proposal density q(xi|xi−1, zi) by using the maximum likelihood
method. The proposal density q(xi|xi−1, zi) is taken as the density function of normal
distribution N (x∗i ,Θi(x

∗
i )) , where

x∗i = argmaxxi
{p(xi|xi−1)p(zi|xi)},

Θ−1i (x∗i ) := ∇2
xi

log
(
p(xi|xi−1)p(zi|xi)

)
|xi=x∗i

.

We note that this approximation is much easier to calculate than the density condi-
tional on all observations. We take the normal noise and model error example (6)–(7) as
a demonstration. We have at the ith time step

p(xi|xi−1)p(zi|xi) ∝ exp

(
−1

2
gi(xi−1,xi, zi)

)
,

where gi is defined in (7). The gradient of 1
2gi(xi−1,xi, zi) with respect to xi is

∇xi

(
1

2
gi(xi−1,xi, zi)

)
=(xi −M(xi−1)− x̄i)TQ−1i + (17)

(H(xi)− zi)TR−1i ∇xiH(xi),

and the Hessian of 1
2gi(xi−1,xi, zi) with respect to xi is

∇2
xi

(
1

2
gi(xi−1,xi, zi)

)
=Q−1i + (∇xi

H(xi))
TR−1i ∇xi

H(xi)+ (18)(
(R−1i (H(xi)− zi))T ⊗ Inx

)
∇2
xH.
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We can easily verify that Assumption 1 is satisfied if the Hessian matrix (18) is positive
definite. We can find the minimizer by setting its gradient (17) to be zero. Its solution
is denoted as x∗i . Applying the Taylor expansion to gi at the point x∗i , we then have

gi(xi−1,xi, zi) ≈ gi(xi−1,x∗i , zi) + (xi − x∗i )TΘ−1i (x∗i )(xi − x∗i ),

where Θ−1i (x∗i ) is equal to the Hessian matrix of 1
2gi at x∗i , that is,

Θ−1i (x∗i ) := ∇2
xi

(
1

2
gi(xi−1,xi, zi)

)
|xi=x∗i

. (19)

We then can use N (x∗i ,Θi(x
∗
i )) as the proposal distribution at the ith step.

3.2. Generating the Proposal Distribution by a Linearization Method

If µ and ν are normally distributed and the mean of µi is x̄i, according to (7), we
can get a quadratic polynomial of xi by Taylor expansion of H(xi) at M(xi−1) + x̄i as

H(xi) ≈ Ĥ(xi) := H
(
M(xi−1) + x̄i

)
+Ai

(
xi −M(xi−1)− x̄i

)
,

where Ai = ∇H
(
M(xi−1) + x̄i

)
. We therefore can obtain the following quadratic as an

approximation of gi in (7):

ĝi(xi−1,xi, zi) :=
(
xi −M(xi−1)− x̄i

)T
Q−1i

(
xi −M(xi−1)− x̄i

)
+
(
zi − Ĥ(xi)

)T
R−1i

(
zi − Ĥ(xi)

)
.

Thus, we can use the density function of N (x̂i,Σi) as proposal density q(xi|xi−1, z0:i),
where

x̂i = M(xi−1) + x̄i +
(
Q−1i +ATi R

−1
i Ai

)−1
ATi R

−1
i

(
zi −H

(
M(xi−1) + x̄i

))
, (20)

and
Σ−1i := Q−1i +ATi R

−1
i Ai. (21)

The two methods introduced in Sections 3.1 and 3.2 use the information of derivatives
of function H or M . In applications, M(x), H(x) can involve ordinary differential
equations. In this case, in order to compute the derivatives, the first or second sensitivities
[23] are required.

3.3. Truncated Normal Distribution

For importance sampling methods to work efficiently, one needs to make sure that
the denominators are far from zero when computing the weights (13). One way to ensure
such an occurrence is by having a heavy-tailed proposal distribution: one whose tails are
heavier than or comparable to the ones of the target distribution. Another way is to
focus on problems with bounded noise as long as the proposal distribution has densitiy
bounded away from zero on the compact domain of the noise. For the chemical plant
application covered in this paper, both µi, and νi are naturally bounded, therefore the
latter case does apply. One way to obtain distributions that have densities bounded below
in this compact domain is to use truncated normal distributions, which is what we will
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do for numerical studies in this paper. As domains, we choose Dµi
:= {0 ≤ µi ≤ x̄i+ζi}

for µi since µi represents material quantities (should greater than zero) in applications,
and Dνi

:= {−δ′i ≤ νi ≤ δi} for some positive vector δi for νi that denotes measurement
noise. We then have the truncated normal density:

pµi
(µi) =

exp
(
− 1

2 (µi − µ̄i)TΘ−1µi
(µi − µ̄i)

)
δDµi∫

Dµi

exp
(
− 1

2
(µ− µ̄i)TΘ−1µi

(µ− µ̄i)
)
dµ

(22)

and

pνi(νi) =
exp

(
− 1

2 (νi − ν̄i)TΘ−1νi
(νi − ν̄i)

)
δDνi∫

Dνi

exp
(
− 1

2
(ν − ν̄i)TΘ−1νi

(ν − ν̄i)
)
dν

. (23)

Let Di = {xi −M(xi−1) ∈ Dµi
}
⋂
{zi − H(xi) ∈ Dνi}. It can be proved by induction

that Di is still a bounded domain if M(·) is bounded and Dµi
, Dνi are bounded. The

proposal density takes the form

q(xi|xi−1, zi) =
exp

(
− 1

2 (xi −mi)
TΘ−1i (xi −mi)

)
δDi∫

Di

exp
(
− 1

2
(x−mi)

TΘ−1i (x−mi)
)
dx

. (24)

Here mi and Θ−1i are determined by the maximum likelihood method or linearization
method.

3.4. Convergence Results of the SMC Method

Convergence results for the sequential Monte Carlo method are discussed in [22],
[24], [25] and [26]. We now adapt them to the case discussed in this paper. The general
convergence formulae using the multinomial resampling are given in [22] and [24]. That
is, if the multinomial resampling method is used in selection, then

N1/2(Ismc(φ, k, p)− I(φ, k, p))

converges to N (0, Vk) in distribution as N → +∞. Here, for φ : x0:k → φ(x0:k), we
define the following:

Vk =

∫
p2(x0|z0:k)

q(x0|z0)

(∫
φ(x0:k)p(x1:k|x0, z0:k)dx1:k − I(φ, k, p)

)2

dx0

+

k−1∑
i=1

∫
p(x0:i|z0:k)

p(x0:i−1|z0:i−1)q(xi|x0:i−1, z0:i)
× (25)

(∫
φ(x0:k)p(xi+1:k|x0:i, z0:k)dxi+1:k − I(φ, k, p)

)2

p(x0:i|z0:k)dx0:i

+

∫
p2(x0:k|z0:k)

p(x0:k−1|z0:k−1)q(xk|x0:k−1, z0:k)

(
φ(x0:k)− I(φ, k, p)

)2
dx0:k. (26)
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If φ : x0:k → φ(xk), then

Vk =

∫
p2(x0|z0:k)

q(x0|z0)

(∫
φ(xk)p(xk|x0, z0:k)dxk − I(φ, k, p)

)2

dx0

+

k−1∑
i=1

∫
p(xi−1:i|z0:k)

p(xi−1|z0:i−1)q(xi|xi−1, z0:i)
×

(∫
φ(xk)p(xk|xi, z0:k)dxk − I(φ, k, p)

)2

p(xi−1:i|z0:k)dxi−1:i

+

∫
p2(xk−1:k|z0:k)

p(xk−1|z0:k−1)q(xk|xk−1, z0:k)

(
φ(xk)− I(φ, k, p)

)2
dxk−1:k. (27)

Note that (25) is derived for general proposal densities; that is, proposal densities are
used as a form of q(xi|x0:i−1, z0:i) and (27) is derived for proposal densities that are
formed as q(xi|xi−1, z0:i). Chopin showed that the asymptotic variance using residual
resampling is smaller than that using multinomial resampling in [24]. Kunsch showed
that residual resampling and systematic resampling improve convergence results in [26].

One can tell from (25) and (27) that Vk increases with k. According to [27] sequential
Monte Carlo methods would fail in some cases because of Vk’s increases at exponential
rate. Hence, to make sure that SMC is tractable, we want to investigate under what
condition can Vk be assumed to not increase rapidly with k. We do so by imposing
reasonable conditions on the distribution of noise and proposal distribution. For Vk
defined in (25), we have the following lemma.

Lemma 1. Assume that for

p(zi|xi) ≥ C1 > 0, and 0 < C2 < p(xi+1|xi) < C3, i = 0, · · · , k, (28)

and

p(xi|xi−1)p(zi|xi)
q(xi|x0:i−1, z0:i)

≤ C4. (29)

Then for φ : x0:k → φ(x0:k) and ‖φ‖ = maxφ(x0:k) <∞, we have that

Vk ≤ (C1C2)−1C3C4(k + 1)‖φ‖.

Therefore, the variance increases no faster than linearly with the number of time steps.
Thus the complexity failure of the exponential type is avoided.

Proof. Let Zi to denote the normalizing constant p(z0:i) of p(x0:i|z0:i), that is,

Zi := p(z0:i) =

∫
p(x0:i, z0:i)dx0:i =

∫ i∏
j=0

p(xj |xj−1)p(zj |xj)dx0:i. (30)

We can find an upper bound of Zk by using p(zi|xi)p(xi+1|xi) > C1C2 and taking them
out of the integrand.That is,

Zk > C1C2Zi−1

∫
p(zi+1|xi+1)

k∏
j=i+2

p(xj |xj−1)p(zj |xj)dxi+1:k. (31)
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According to the definition of p(x0:i|z0:k), we have

p(x0:i|z0:k) = Z−1k

∫
p(x0:k, z0:k)dxi+1:k

= Z−1k p(x0:i, z0:i)

∫ k∏
j=i+1

p(xj |xj−1)p(zj |xj)dxi+1:k

≤ Z−1k C3p(x0:i, z0:i)

∫
p(zi+1|xi+1)

k∏
j=i+2

p(xj |xj−1)p(zj |xj)dxi+1:k

≤ Z−1i−1(C1C2)−1C3p(x0:i, z0:i). (32)

The last equality holds from (31). According to Bayes’ formula, we have

p(x0:i−1|z0:i−1) = Z−1i−1p(x0:i−1, z0:i−1). (33)

Hence, from (32), (33), and condition (29), we have

p(x0:i|z0:k)

p(x0:i−1|z0:i−1)q(xi|x0:i−1, z0:i)
≤ (C1C2)−1C3C4. (34)

Because ‖φ‖ = maxφ(x0:k) <∞, we have that(∫
φ(x0:k)p(xi+1:k|x0:i, z0:k)dxi+1:k − I(φ, k, p)

)2

≤ 4‖φ‖2. (35)

The last inequality follows from the triangle inequality of absolute values and the fact
that |

∫
ψ(x,y)g(x|z)dx| ≤ Cu

∫
g(x|z)dx = Cu if ψ(x,y) ≤ Cu and g is a density

function, which is also applied to every component in (25). Thus, from (34) and (35),
each component of variance Vk in (25) is upper bounded by 4(C1C2)−1C3C4‖φ‖2, which
implies that

Vk ≤ 4(C1C2)−1C3C4(k + 1)‖φ‖2.

The proof is then complete. 2

Condition (28) is not satisfied by the normal distribution. But it is satisfied for the
truncated normal distribution in (22) and (23) if H(·) and M(·) are continuous and Dµi

,
Dνi

are bounded.
For Vk defined in (27), a better result can be achieved if the distribution of noise

can “forget the past.” This ability is crucial in obtaining our estimate in Lemma 2.
To measure this ability, we can use contraction coefficients [28]. According to [24], the
contraction coefficients ρk satisfy

ρk :=
1

2
sup

x′l,x
′′
l ∈Xl

∫
|p(xk|x′l, z0:k)− p(xk|x′′l , z0:k)|dxk ≤ (1− C−2)k−l, (36)

if the following inequality holds:

p(xi|x′i−1)

p(xi|x′′i−1)
≤ C, ∀xi,x′i−1,x′′i−1 ∈ Xi, ∀ i = 1, · · · , k. (37)
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The slightly stronger condition

cah(xi) ≤ p(xi|xi−1) ≤ Cah(xi), (38)

is provided by Kunsch in [26] as an alternative to (37). Kunsch proved that condition
(38) is satisfied for bounded M and µi and when the logarithm of density function is uni-
formly Lipschitz continuous. Most heavy-tailed distributions and the truncated normal
distribution discussed in the paper, satisfy this condition, but not normal distributions.

Lemma 2. If (28) and (37) hold, and if

p(xi|xi−1)p(zi|xi)
q(xi|xi−1, z0:i)

≤ C4, (39)

then Vk defined in (27) for φ : x0:k → φ(xk) with φ ≤ ‖φ‖ is bounded.

Proof. First, the difference between
∫
φ(xk)p(xk|xi, z0:k)dxk and I(φ, k, p) can be bounded

by ∣∣∣∣∫ φ(xk)p(xk|xi, z0:k)dxk − I(φ, k, p)

∣∣∣∣
=

∣∣∣∣∫ φ(xk)p(xk|xi, z0:k)dxk −
∫
φ(xk)p(xk|x′i, z0:k)p(x′i|z0:k)dx′idxk

∣∣∣∣
=

∣∣∣∣∫ φ(xk)

(
p(xk|xi, z0:k)−

∫
p(xk|x′i, z0:k)p(x′i|z0:k)dx′i

)
dxk

∣∣∣∣
≤ ‖φ‖

∫ ∣∣p(xk|xi, z0:k)p(x′i|z0:k)− p(xk|x′i, z0:k)p(x′i|z0:k)
∣∣dx′idxk

= ‖φ‖
∫
p(x′i|z0:k)dx′i

∫ ∣∣p(xk|xi, z0:k)− p(xk|x′i, z0:k)
∣∣dxk

≤ 2‖φ‖(1− C−2)k−i. (40)

Note that this inequality holds for any xi. The last relationship follows from (36) and
from the cited result of [24].

By using the definition of p(xi−1:i|z0:k) and a technique similar to that used in the
proof of Lemma 1, we have that

p(xi−1:i|z0:k)

=

∫
p(x0:i|z0:k)dx0:i−2 = Z−1k

∫
p(x0:i, z0:i)dx0:i−2dxi+1:k

= Z−1k p(zi−1|xi−1)p(xi|xi−1)p(zi|xi)

×
∫
p(x0:i−2, z0:i−2)p(xi−1|xi−2)dx0:i−2

∫ k∏
i+1

p(xj |xj−1)p(zj |xj)dxi+1:k

≤ p(xi−1|z0:i−1)(C1C2)−1C3p(xi|xi−1)p(zi|xi).

The last inequality holds because, according to the definition of p(xi−1|z0:i−1),

p(xi−1|z0:i−1) = Z−1i−1

∫
p(x0:i−2, z0:i−2)p(xi−1|xi−2)dx0:i−2p(zi−1|xi−1),
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and (31) holds from condition (28). It therefore follows that

p(xi−1:i|z0:k)

p(xi−1|z0:i−1)q(xi|xi−1, z0:i)
≤ (C1C2)−1C3C4, (41)

where the last inequality holds because of condition (39).
Hence, from (40), (41), and the fact that if ψ(x,y) ≤ Cu and g is a density function

|
∫
ψ(x,y)g(x|z)dx| ≤ Cu

∫
g(x|z)dx = Cu,

each component of variance Vk in (25) is upper bounded by 4(C1C2)−1C3C4‖φ‖2(1 −
C−2)2k−2i. This implies that

Vk ≤ 4(C1C2)−1C3C4‖φ‖2
k∑
i=0

(1− C−2)2k−2i

≤ 4(C1C2)−1C3C4‖φ‖2
1

1− (1− C−2)2
.

The proof is then complete. 2

To summarize, we have the following theorem.

Theorem 1. Suppose that ‖φ‖ = maxφ ≤ ∞, µi in (1) and νi in (2) are truncated
normal distributed and the proposal density is chosen as in (24). Then

N1/2(Ismc(φ, k, p)− I(φ, k, p))

converges to N (0, Vk) in distribution, where Vk increases linearly with k if φ : x0:k →
φ(x0:k) and is independent of k if φ : x0:k → φ(xk).

Proof. Because µ, ν are truncated normal distributed and the proposal density is chosen
as in (24), conditions (28) and (29) are satisfied for φ : x0:k → φ(x0:k). According to
Lemma 1, Vk increases linearly with k. Note that conditions (28),(37), and (39) hold for
truncated normal density functions. That is, the conditions in Lemma 2 apply. Hence
Vk is independent of k. The proof is complete. 2

3.5. Numerical Convergence Rate

Assume that the operators M and H in the definition of the state space model (1)–(2)
are not easy to compute. That situation happens, for example, if one needs to integrate
a differential equation between the observations.

We then have to compute with an approximate state space model such as

xi = M̃(xi−1) + µi, (42)

zi = H̃(xi) + νi. (43)

Then we have p̃(xi|xi−1) = pµi

(
xi − M̃(xi−1)

)
, and the conditional density of zi given

xi is p̃(zi|xi) = pνi

(
zi − H̃i(xi)

)
. And the posterior is denoted as p̃(x0:k|z0:k). To make

sure that SMC methods still produce reasonable results for good approximations of M
and H, we require that log(pµi

), log(pνi
) are Lipschitz continuous and hence have the

following theorem.
12



Theorem 2. Assume that the conditions of Theorem 1 are satisfied and log(pµi
), log(pνi)

are Lipschitz continuous with Lipschitz coefficient Lµ and Lν respectively. If furthermore

|M̃(x) −M(x)| < ε/(2Lµ), |H̃(x) − H(x)| < ε/(2Lν) and ε is small enough, then for
sequential Monte Carlo methods using multinomial resampling, we have that

Ismc(φ, k, p̃)− I(φ, k, p)

converges to N (Ek, N
−1Vk) in distribution, where Vk is linear with k if φ : x0:k →

φ(x0:k), Vk is independent of k if φ : x0:k → φ(xk), and Ek is upper bounded by
2‖φ‖

(
exp

(
(k + 1)ε

)
− 1
)
.

Proof. We can rewrite Ismc(φ, k, p̃)− I(φ, k, p) as

Ismc(φ, k, p̃)− I(φ, k, p) = (Ismc(φ, k, p̃)− I(φ, k, p̃)) + (I(φ, k, p̃)− I(φ, k, p)).

The first component is already discussed in Theorem 1. Only the second component is
needed for the discussion in this proof. The second parts describe the bias introduced
by using approximations of H and M.

Let

Ti := log
(
pµi

(
xi − M̃(xi−1)

))
− log

(
pµi

(
xi −M(xi−1)

))
+ (44)

log
(
pνi

(
zi − H̃(xi)

))
− log

(
pνi

(
zi −H(xi)

))
.

Because log(pµi
), log(pνi

) are Lipschitz continuous and |M̃(x) − M(x)| < ε/(2Lµ),

|H̃(x)−H(x)| < ε/(2Lν), we have that that

|Ti| ≤ Lµ
ε

2Lµ
+ Lν

ε

2Lν
= ε. (45)

Using this inequality, we can prove that

|p̃(x0:k, z0:k)− p(x0:k, z0:k)| ≤ p(x0:k, z0:k)

(
exp

( k∑
i=0

|Ti|
)
− 1

)
≤

(
exp

(
(k + 1)ε

)
− 1
)
p(x0:k, z0:k). (46)

In the same fashion, we can get

|p̃(x0:k, z0:k)− p(x0:k, z0:k)| =
(
exp

(
(k + 1)ε

)
− 1
)
p̃(x0:k, z0:k). (47)

It is therefore easy to prove that

S1 :=

∣∣∣∣p̃(x0:k, z0:k)

∫ (
p(x0:k, z0:k)− p̃(x0:k, z0:k)

)
dx0:k

∣∣∣∣
≤
(
exp

(
(k + 1)ε

)
− 1
)
p̃(x0:k, z0:k)

∫
p(x0:k, z0:k)dx0:k, (48)

and

S2 :=

∣∣∣∣(p̃(x0:k, z0:k)− p(x0:k, z0:k)
) ∫

p̃(x0:k, z0:k)dx0:k

∣∣∣∣
≤
(
exp

(
(k + 1)ε

)
− 1
)
p(x0:k, z0:k)

∫
p̃(x0:k, z0:k)dx0:k. (49)

13



Hence it is not difficult to prove that

|I(φ, k, p̃)− I(φ, k, p)|

=

∣∣∣∣∫ φ(x0:k) (p̃(x0:k|z0:k)− p(x0:k|z0:k)) dx0:k

∣∣∣∣
≤ ‖φ‖

∫
|p̃(x0:k|z0:k)dx0:k − p(x0:k|z0:k)| dx0:k

≤ ‖φ‖

∫
(S1 + S2)dx0:k∫

p̃(x0:k, z0:k)dx0:k

∫
p(x0:k, z0:k)dx0:k

. (50)

To obtain the last inequality, we rewrite p̃(x0:k|z0:k)dx0:k and p(x0:k|z0:k)dx0:k, accord-
ing to the fact that

g(x0:k|z0:k) =
g(x0:k, z0:k)∫
g(x0:k, z0:k)dx0:k

for any conditional density g, and then combine the two fractions into one. After that, in

the numerator we add (

∫
p̃(x0:k, z0:k)dx0:k)2, and then subtract it, and apply triangle

inequality for absolute values. From (48), (49), and (50), it follows that

|I(φ, k, p̃)− I(φ, k, p)| ≤ 2‖φ‖
(
exp

(
(k + 1)ε

)
− 1
)
.

The proof is complete. 2

Note that if (k+1)ε is small, exp
(
(k+1)ε

)
−1 is close to (k+1)ε. Hence, the bias is accu-

mulated linearly with k when k is in a moderately large region if accurate approximations
of M and H are used.

Theorem 2 shows that sequential Monte Carlo methods can give us reasonably good
estimations if the log densities of µi and νi are Lipschitz continuous and approximations
of M and H are good enough. This convergence result is similar to Theorem 1, except
that the errors in the approximations introduce a bias and the bias will increase with
the number of steps. Hence, to get estimations of fixed accuracy, we need to increase the
accuracy of approximation when the number of steps increases.

In the test example in next section, M(x) and H(x) are functions of the solution of
an ordinary differential equation (ODE) system with x as the initial value. During the
simulation, we can get only an approximation of M(x) or H(x) by numerical schemes.
Theorem 2 shows that SMC methods would work well with such problem if a good
numerical scheme for the initial-valued ODE is provided during the simulation.

4. Numerical Demonstration of the Approach

We now present details for numerical simulations for the steam methane reforming
(SMR) process. The chemical reactions involved are

C H4 + H2 O 
 C O +3 H2, (51)

C O + H2 O 
 C O2 + H2 . (52)
14



We model this chemical process according to [29] and build the ODE system to describe
the reaction according to [30]. For details on the setup, see Appendix A.

4.1. Sequential Importance Sampling Toolkit for ODE Systems

We developed a library called Sequential Important Sampling Toolkit for ODE Sys-
tems to produce samples from the HMM posterior using a particle method. SISTOS
provides the following

1. Importance sampling, sequential importance sampling and sequential Monte Carlo
sampling. Proposal densities used are the normal and the truncated normal.

2. Systematic, residual and multinomial resampling methods [22, 21] for the sequential
Monte Carlo method.

3. Parallel programming support by means of the PETSc library’s [31] syntax and
data structure. Note that resampling requires a synchronization step at each time
step. Therefore parallelism is not difficult to implement, but it is not trivial either.

4. Automatic differentiation support (for use in the linearization and maximum like-
lihood procedures) through the ADIC [32] and ADOLC [33] libraries.

5. Optimization support (for use in the maximum likelihood procedure) through TAO
[34].

4.2. Performance result

In the numerical experiments, we compute the average amount of leakage of CO,CO2

and H2 . For each cycle, tf is set to be 1. For the random variable µi, we take Qi = 0.01I
and for νi, Ri = 0.01. The upper bound of the random number µH2 O,i is 6 and of µCH4

is
2, and their lower bound is 0. For νi, its upper bound is 1 and its lower bound is −1. All
tests are run on the high-performance cluster Fusion at Argonne National Laboratory.
We plot numerical results in loglog scale. We can see from Figure 1(b) and 1(d) that
the run time is increasing approximately linearly with the number of sample points,
which indicates that the targeted observable is predictable, as stated in Theorem 1 and
Theorem 2.

We first test a five-step SMR example in 20 independent runs for a comparison be-
tween importance sampling (IS) and SMC. The reason we only choose a five-step SMR
example here is that for a 10-step example would fail for the IS method. The proposal
density of IS is chosen here by the Laplace’ method [35]. We use the maximum likelihood
method to choose proposal densities and systematic resampling technique for SMC. From
Figure 1(a), we can see that SMC performs much better than IS.

We test the 100-step and SMR example in 100 independent runs using eight processors
to compare the maximum likelihood method and the linearization method.

In Figure 1(c), we compare the numerical results of the maximum likelihood and the
linearization method. We can see that both methods show a convergence rate O(N−1/2)
approximately, as predicted by the theory.
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Figure 1: Numerical Results: (a) comparison of sample standard deviation between IS and SMC when
k = 5. SMC uses systematic resampling method; (b) comparison of wall time between IS and SMC when
k = 5. SMC uses systematic resampling method; (c) comparison of sample standard deviation between
maximum likelihood method and linearization method when k = 100. Use systematic resampling; (d)
comparison of wall time deviation between maximum likelihood method and linearization method when
k = 100. Use systematic resampling.

4.3. Comparison between the maximum likelihood or linearization SMC approach and the
bootstrap SMC approach

In our theoretical developments in §3 we were concerned with finding conditions for
the maximum likelihood or linearization filters to avoid the failure of the exponential
type as was encountered by the bootstrap particle filter [27]. The latter is an SMC
approach that uses as a proposal density p(xi|xi−1) as opposed to the one obtained by
maximum likelihood or linearization as we have derived here. It can be proven that,
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under assumptions essentially similar to the ones of our results in §3, the bootstrap
particle filter also avoids the exponential failure in this case.

However, the bootstrap particle filter does have a shortcoming compared to the maxi-
mum likelihood or linearization SMC, that is, its proposal density does not accommodate
observation noise, as it is tuned exclusively to the dynamical part.

Let’s take 1-d state space model for example.

xi = 0.5xi−1 + 25xi−1/(1 + x2i−1) + 8 cos(1.2i) + σµµi; (53)

zi = xi + σννi. (54)

Here µi ∼ N (0, 1) and νi ∼ N (0, 1). It can be immediately shown that the linearization
method and maximum likelihood method introduced in this paper result in the same
proposal distribution as N (µ̄i, σ

2
i ), with σ2

i = (σ−2µ + σ−2ν )−1 and µ̄i = σ2
i (zi/σ

2
ν +

(0.5xi−1 + 25xi−1/(1 + x2i−1) + 8 cos(1.2i))/σ2
µ).

We test a 10-step 1-d example in 20 independent runs for a comparison of the standard
deviations between the bootstrap particle filter and maximum likelihood (linearization)
particle filter. In Fig.3, different colors represent different σµ (state noise level) and
different markers represent different particle filters. From Fig.3, we can see that the
performance of the maximum likelihood particle filter is relatively stable with increasing
σµ, whereas the one of the bootstrap particle filter significantly degrades with increasing
σµ, as was also suggested by the argument above. We get some insights of the cause
for this phenomenon from Figure 2. With the σµ increasing, the proposal density of the
bootstrap becomes flatter, as the dynamical part becomes less informative. On the other
hand, the shape of the proposal density based on the maximum likelihood or linearization
approach does not change much because it also incorporates the effect of observations
whose noise level is kept constant, see Fig. 2. When applications have a weak dynamic
model but moderately accurate observations, the bootstrap density is not sufficiently
informative, which in turn results in the high variance of the estimates as indicated in
Figure 3.
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Figure 2: The importance density plots of the bootstrap particle filter and maximum likelihood method
in 1-d example
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5. Conclusion

In this article, we investigate the behavior of sequential Monte Carlo methods when
used for the estimation of state space uncertainty in nonlinear dynamical systems. The
uncertainty model used is the hidden Markov model associated with differential equa-
tions. Our main objective is to investigate whether such methods are tractable for
assessing uncertainty in dynamical systems of the type encountered in chemical engi-
neering applications. We investigate the case where the proposal densities are produced
by either the linearization method or conditional maximum likelihood method. We prove
that for two state functionals widely encountered in applications, the scaled variance of
the resulting statistical estimator behaves favorably. That is, the estimates produced by
sequential Monte Carlo methods converge in distribution, and the variance is confined
to a linear increase with an increase on the number of steps for accumulated estimates
and is bounded by a constant for terminal estimates. Thus, the method is tractable in
these circumstances.

We are also interested in the practical case where the computation of the dynamical
and observational maps cannot be carried out exactly. We show that errors arising from
computing M and H introduce a bias that depends on the accuracy with which these
mappings are computed. The bias accumulates with an increase in the number of steps.
Hence, we need to improve the accuracy of the approximation of H and M if the number
of steps increases.

For numerical demonstrations, we use the steam methane reforming process as an ex-
ample to demonstrate the SMC behavior on dynamical systems originating from chemical
systems. The numerical results are consistent with the theoretical results. The approach
has been implemented in the parallel portable library SISTOS.
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Appendix A. Steam Methane Reforming

In this appendix, we use the steam methane reforming (SMR) process as an example
to demonstrate the setup of the hidden Markov model. SMR is used in industries to
separate hydrogen atoms from carbon atoms in methane.

We model the chemical process in the following way [29]: At each end of the cycle,
the products are extracted, and the unconsumed reactants are combined with the new
reactant feed.

We define a vector Y i ∈ Y ⊂ Rny that has two parts,

Y i =

[
Y in
i

Y out
i

]
.

Here Y in
i denotes the recycled components and Y out

i denotes the extracted components.
We describe the chemical process as an initial-valued ODE

Ẏ i = F (Y i), (A.1)

Y in
i (0) = Xi, (A.2)

Y out
i (0) = 0. (A.3)

Here Xi is a vector of state variables, which denotes the initial amounts of reactants at
each cycle. We compute the solution after tf , Y i(tf ) from ODE system, and we define

M(Xi) := Y in
i (tf ), (A.4)

H(Xi) := hi(Y
out
i (tf )). (A.5)

This completes the definition of the HMM components (1)–(2).
The SMR reaction is

C H4 + H2 O 
 C O +3 H2, (A.6)

C O + H2 O 
 C O2 + H2, (A.7)

We denote

Y in = [yH2 O, yCH4
]T ,Y out = [yCO, yCO2

, yH2
]T , and Xi = [xH2 O,i, xCH4,i]

T .

Let I denote the character set {H2O,CH4,CO,CO2,H2}. The reaction equations [30]
chosen here for SMR are

r1 = a1 exp(−Ea1/RT )
√
RT (

yCH4√∑
j∈I yj

−
yCOy

3
H2

(RT )2

keq1yH2 O

√∑
j∈I yj

), (A.8)

r2 = a2 exp(−Ea2/RT )
√
RT (

yCO√∑
j∈I yj

− yCO2
yH2

keq2yH2 O

√∑
j∈I yj

). (A.9)

Hence the right-hand side of the ODE is

F (Y ) =


−r1 − r2
−r1
r1 − r2
r2
3r1 + r2

 . (A.10)
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Let yj,i, j ∈ I, i = 0, · · · , k be the solution of the ODE system defined by (A.1)–(A.3)
and (A.8)–(A.10) at ti+1 = ti + tf . Hence

M(xH2 O,i, xCH4,i) :=

{
yH2 O,i,
yCH4,i,

(A.11)

and

H(xH2 O,i, xCH4,i) := yH2,i + yCO,i + yCO2,i. (A.12)

The hidden Markov model thus is

xH2 O,i+1 = yH2 O,i + µH2 O,i+1 (A.13)

xCH4,i+1 = yCH4,i + µCH4,i+1, (A.14)

zi+1 = yH2,i+1 + yCO,i+1 + yCO2,i+1 + νi. (A.15)

Here µi,H2 O and µi,CH4
are random variables representing the amounts of refills, and νi

denotes the uncertainty of the observation.
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